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Fixed-point perturbation theory and the potential 
r2 + hr2/( 1 + gr2): I. Analysis of convergence 

M Znojil 
Institute of Nuclear Physics, Czechoslovak Academy of Sciences, 250 68 Rei, 
Czechoslovakia 

Received 3 April 1984 

Abstract. The simplest illustration of the recently suggested asymptotic-perturbative 
approach to the band-matrix Hamiltonians is found in the harmonic oscillator comple- 
mented by the non-polynomial anharmonicity A r 2 / (  1 + g r 2 ) .  In the paper, the detailed 
construction of the effective Hamiltonian is given and the convergence of its fixed-point 
expansion is shown. 

1. Introduction 

The reasons for study of the various anharmonic oscillators range from the purely 
phenomenological needs of quantum mechanics up to the perturbative and field- 
theoretical methodology (Itzykson and Zuber 1980). In particular, a number of papers 
(the updated list of references may be found, e.g. in Choudhury and Mukherjee 1983) 
have been devoted to the one-body problem 

X 

+ r 2 =  C In)E,(nl 
d2 1(1+1)  H ---+- 

O -  dr2 r2 n=O 

E, =4n+21+3,  1 = -1,O or 0, 1, . , 

After the discovery by Flessas (1979) of the exceptional elementary solutions of 
( l . l ) ,  Whitehead et a1 (1982) converted the differential equation (1.1) into the simple 
algebraic set 

1 zo \ 
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where N 2 1 and the harmonic-oscillator basis is used: 

Z k = ( E k - E + A l g ) ( k l ( L ) ,  

a k  = i g E k  + 1 - A ( A  + g & k  - g E ) - ’ ,  

bk-1  = g [ k ( k + I + d I  , 
(1.3) 

k = 0 ,  1 , . . . ,  N-I.  I 1 / 2  

In this formulation, we may classify all the elementary solutions easily by the choice 
of N a l ,  N<co. 

With N = CO, the algebraic equation (1.2) becomes equivalent precisely to the 
original differential Schrodinger eigenvalue problem ( 1  . l )  (Znojil 1983, hereafter re- 
ferred to as p). This makes the anharmonicity r 2 / (  1 + gr’) one of the simplest interac- 
tions from the formal point of view. 

Equation (1.1) appears to be suitable for testing the various computational and 
perturbative algorithms (Lai and Lin 1982, Bessis er a1 1983). In the present paper, 
we intend to use it as the simplest non-trivial test and illustration of efficiency of our 
general ‘fixed-point’ perturbation theory ( FPFT, Znojil 1984a). 

In § 2, we recall the main result of P, namely, the continued-fractional form of 
solution to (1.1). In § 3, this enables us to obtain a simple implicit equation for energies 
which is suitable for application of the general fixed-point expansion technique. In 
9 4 we shall analyse its convergence. The results will be summarised in § 5. 

2. Recurrences for wavefunctions 

Equation (1.2) alone (without (1.3)) is simply a general set of the homogeneous 
three-term recurrences. In the light of their mathematical theory (see e.g. Korn and 
Korn 1968, § 20.4-4) they resemble the ordinary second-order linear differential 
equation. In particular, we may use the explicit determinantal solution 

(2.1) 

which is ‘regular in the origin’ (Znojil 1984b). We may also find some analogue of 
the oscillation theorem so that the ‘physical’ solutions may be specified by the 
asymptotic boundary-type conditions zN = 0 or 

det Q N )  = 0 (2.2) 
in the limit N + CO (cf P and the so-called Hill-determinant method and its modifications 
(Ginsburg 1982)). 

2.1. The truncation of recurrences 

In the present case, we may interpret (2.2) simply on the variational grounds, i.e., as 
a secular equation pertaining to the truncation of (1.2) (cf P for details). With the 
matrix elements defined by the analytic formula (1.3), we may eliminate at least part 
of its numerical character by the factorisation i l  \ 
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W k  = bkfk+ 1 = dk+ I ,  

It is defined by the recurrences 

k = O , l ,  . . . ,  N - 2 .  

&' = ak - b2kfk+l ,  k = 0 , 1 ,  . . . ,  N - 1 ,  f N  = 0, (2.4) 

i.e., in terms of the analytic continued fractions 

(2.5) 
1 

f k  = 
1 

ak+ I - b2k+ I 
1 

ak - b; 

ak+2 -. . . 
bN-I=O, N+CO 

(Wall 1948). 
The determinant in (2.2) may be identified with the product of the diagonal matrix 

elements in (2.3). We may ignore the singularities here ( f m + ,  = CO implies that fm = 0 
and f m + l f m  = bG2, m 2 0) so that the secular eigenvalue condition (2.2) may be given 
the (precisely equivalent) continued-fractional form 

f ; l =  0. (2.6) 

Having solved (2.6), we may use its byproducts (2.5) and also rewrite (2.1): 

constant = ( 0 1 + )  6, 

6 =$(2f+3 - E + h / g ) ,  n = 0 , 1 , 2  , . . . .  
(2.7) 

This form of eigenvectors proves to be useful especially for an investigation of their 
convergence in the norm (cf P again). 

2.2. Leading-order asymptotic estimate and the acceleration of convergence of the 
auxiliary continued fractions 

For the matrix elements (1.3), the asymptotic behaviour of fk, k >> 1 has already been 
investigated in P. This study was based on an observation that the auxiliary mapping 

p( k ) :  = ( + 1 ) f k +  1 Y = kfk 

becomes almost independent of k for k >> 1 .  Hence the sequence of ratios 

( k / + ) / ( k  - 1 I$!') = -bk-ifk( 1 + O ( k - ' ) )  

may only oscillate or accumulate near one of the fixed points of & k ) .  Moreover we 
may easily verify that our mapping p ( k )  has a simple form 

k >> 1 
1 + O ( k - ' )  ' = 2 g  - x(g2+ O( k - ' ) ) '  

compatible with the accumulation. In this case, we obtain an estimate: 

bk-1 fk = 1 + O ( k - " 2 ) .  (2 .9)  
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A more detailed analysis as performed in P shows that any prescription compatible 
with the second-order formula 

b k -  !fk = 1 - (gk)-I/’ + C( k) 

c( k) f 2(gk)-’/’ + O( k-’) (2.10) 

guarantees the normalisability of $ in (1.1). Vice versa equation (2.10), k = N, is 
equivalent to the continued-fractional initialisation f N  = 0 in the limit N + a, accelerat- 
ing only its convergence for c(  N )  = o ( N - ’ ) .  

In the light of the standard theory (Wall 1948), we may accelerate the convergence 
in a systematic way by the redefinitions 

f , = f p p + h j p ’ ,  k = 1,2, . . . (2.1 1) 

of the continued fractions. The subtracted quantity hio) should be a good approximation 
to fk.  In essence, just an iterative application of this idea is the essence of the FPFT in 
application to the present anharmonic oscillator with the tridiagonal Q or Hamiltonian 
H== Q+EI.  

3. Fixed-point perturbation series 

3.1. Secular equation 

In the continued-fractional formula (2.7) we may use the identity 

f i f i  ’ 1 . . f n  = det 1;; . . .  :l b, - b:ff l+, det 1:: !:. bz ] (3.1) 

b n - i  a n  b n - 2  an-l 

n = 2 , 3 ,  . . .  
and express the products of fk as functions of the single continued fraction f f l + , .  This 
will simplify also the projections (ml$), m =0, 1, . . . , n. 

In a similar way, we may also replace the secular equation (2.6) by the requirement 

det Q f l + l )  = biff l+l  det Q ( n ) ,  n 3 1  (3.2) 

containing the same continued-fractional ‘input’ f n t l .  It is solvable numerically with 
an arbitrary precision, provided only that the input function fn+l  is known. Here, it 
is to be represented by the FPFT series. Its construction (present §) and proof of 
convergence (§  4) are easy. Moreover, after a modification (Znojil 1984c), also its 
form becomes simple even when compared with the continued-fractional expansion. 
Nevertheless, the main merit of the FPFT form of f n t l  will lie in its extremely rapid 
rate of convergence. 

3.2. Leading-order jixed-point approximant 

Formulae (3.1) and (3.2) enable us to choose n >> 1 and vary the input fn+l  without 
causing any significant errors. This is the essence of the numerical algorithm of Lanczos 
(Wilkinson 1965)-the higher matrix elements of Qm) do not carry any important 
information about the low-lying spectrum of energies in most of the applications. 
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Alternatively, we may preserve the precision of energies by an improved evaluation 
of f n + l  at n = 0(1) ,  still keeping in mind the low information content of the higher 
matrix elements. This is the essence of the present FPPT approach. 

From the formal point of view, we have to take into account the smooth part of 
the matrix Q by a sort of interpolation procedure. Indeed, as a consequence of (1.3) 
or (2.10), we may expect that fk “ f k + l  ==fixed point (cf also P or 0 2.2). In this way, 
the definition 

h i ’  = a k  - b i h k  (3.3) 

inspired by (2.4) is to be used in (2.1 1).  Of course, it is ambiguous, 

(3.4) 2 I/2 
h k  = ( 2 b i ) - ’ [ a k  f ( a i - 4 b k )  ] 

but, fortunately, the physical requirement (2.10) enables us to eliminate the wrong 
sign without any difficulty (see below). 

3.3. Iterated s u b t r a c t i o n s  

We may insert f m  = h‘,O’+f:’, m = k, k + 1 and re-write (2.4) as a mapping f i y l  + f i l )  

generating the corrections to the fixed-point approximation. Of course, such a pro- 
cedure may be repeated giving 

, M a 1  (3.5) f k -  - h ( 0 )  k f h ( ] ) +  k . . .  + h i M - l ) + f i M )  

in the Mth step. 
We may notice that all the higher-order mappings acquire the same fractional form 

(3.6) 

Hence, the parameters may be generated by the recurrent prescriptions 

D ( M )  = D ( M - 1 )  

B ( M )  = B ( M - 1 )  - D ( M - l ) h ( M - l )  

A i M )  = B ( M ) ( h i M - l )  - h ( M - 1 )  

C i M )  = C ( M - l ) +  D ( M - 1 )  (M-1)  
k k ,  k k h k + l  , 

(3.7) k k k k ,  

k = 1 , 2  , . . . ,  M = l , 2  , . . . .  k + I  k 1, 
With the initial choice 

Aio) = 1, BPI = 0, c p’ ak, Of’ = -bi k = 1,2, . . . (3.8) 

they correspond to the original definition (3.4). 
It is important to notice here that the higher-order fixed points 

= (1/2DP’)[B‘,M’- C(kM)+[(BLM)- Cj;M’)2+4A(kM)D(k0)]1’2], (3.9) 
M>Mo 

are unique. Their sign must be chosen in such a way that they remain small, Ih(kMM’Icc 
lhiM-”l. Otherwise, we would reintroduce the root eliminated in the preceding step. 



3 446 M Znojil 

3.4. Modifications 

In place of fk we may consider any product f k  = fk xsome function of k. In the 
fixed-point formalism of P 3.3, this corresponds merely to a change of the initialisation 
(3.8). At the same time, it could improve the properties of the FPFT expansion (3.5). 

In the present example, a non-trivial modification f k  + T k  is in fact desirable. Indeed, 
(3.3) implies that 

bk-lhk= 1 - ( g k ) - ’ / ’ + C ( k )  

c ( k ) = [ ( g / k ) I /  * + 0 ( k ) - ‘I/ [ 1 + ( 1 - g ) ‘’’1 
(3.10) 

which ceases to be real (for g > 1) in the very first iteration. Fortunately it is sufficient 
to replace& by the %lded’Tk = bk-lfk and similarly (3.3) by the ‘more natural’ definition 
T k  = T k + i  F= G k ,  i.e., 

Then mutatis mutandis we obtain 

(3.1 1 )  

(3.12) 

which gives the optimal error c ( k )  = O( I l k )  in (2.10). 

mapping of corrections 
Resulting formulae are only slightly more complicated-as an example, the first 

(3.13) 

gives the ‘maximal’ acceleration of the continued-fractional convergence in the first- 
order algorithm. 

4. Convergence of the fixed-point expansion 

4. I .  Algebraic proof 

The asymptotic behaviour of continued fractions (2.5) is closely related to their 
convergence, as well as to the asymptotic smoothness of matrix Qm, (P). Here we 
intend to relate them also to the convergence of our FPFT. 

From the purely formal point of view, any finite form of (3.5) remains merely an 
algebraic equivalence transformation fro' +=fiM). Hence, it is necessary to analyse the 
remainder f:“’ for M >> 1. It may be simplified by the relations 

and 
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which follow from (3 .7)  and imply that 

Hence, we may conclude that 

3 M >  MO hiM)/h(M-l) k = O ( k - l )  (4 .4)  

so that, provided that the higher-order roots do not become complex, the asymptotic 
series (3 .5)  will converge very quickly. At the same time, the rate of convergence will 
be controlled by the parameter k-I ,  the magnitude of which is fully at our disposal 
and may be chosen smaller for the less smooth matrices Qm,. In the present example 
( l . l ) ,  the ‘smoothness’ of Q is such that we may use MO = 0 in (4 .4) .  

4.2. Geometric picture 

In an alternative formulation of the convergence question, we may recall the particular 
initial values (say, ( 3 . 8 ) )  and obtain 

This enables us to rewrite (3 .6)  in a simple fio’-dependent and very transparent form 

The Raabe criterion of convergence (Korn and Korn 1968) necessitates that 

I bk- I f k  I < 1 - k-l = 1 bk- I /  bn I 
for large k As a consequence we may put bkfk =cos Q where the real angle Q lies 
somewhere within the interval (0, T). In this notation, the fixed points of the mapping 
(4 .6)  acquire a simple form 
h(M+l) = A(M) 

k ( 2  cos2 Cp)/z(+) 
(4 .7)  

Z(*) = Sin2 Cp -k bkALM’ COS Q * [(Sin2 Q + bkhiM’ COS Q)2+4bkhiM)  COS3 Q]’ ” .  

Obviously, for the presumably small A i M ) ,  we must avoid the singularity and use the 
plus-sign here. Then, we have 

(4 .8)  

which confirms the estimate (4 .4)  in an explicit way. 

and get the formula 
On the boundary of the above-mentioned interval, we would put bkfk = * 1 = *&fk 

(4 .9 )  

differing from (4 .8)  in an essential way. Such a case gives a slower convergence. In 
the present example, it is not encountered since (2.10) implies that ~p f 0, T, at least 
for k >  ko. 

h(M+I)  k = - J - ( A L ~ ) B ; ’ ) ~ / ~ - + A ‘ , ~ ) (  1 + O ( A i M ) B k ) 1 / 2 )  



3448 M Znojil 

5. Summary 

The Schrodinger eigenvalue problem (1.1) has been interpreted as the three-term 
recurrences (1.2) plus the physical ‘boundary conditions’ in the preceding paper P. 
The general ‘regular-type’ solutions (2.2) have been made physical by their asymptotic 
restriction (2.10). 

In the present continuation, the ‘Jost-type’ solutions (2.7) and (3.5) become physical 
after their restriction (3.2) ‘near the origin’. In this way, a complete algebraic symmetry 
between n = 0 and n =CO is established, complementing the numerical tests as given 
in P. 

The present tridiagonal matrix representation of the Hamiltonian (H = Q + EI, 
which depends on energy in this form) is well suited for application of the FPPT idea. 
Indeed, the matrix Q is asymptotically ‘smooth’ (this supports (implies) a quick 
convergence of the FPPT) and its matrix elements are simple functions of the indices 
(this simplifies the algebraic construction of the FPFT formulae). Moreover, the one- 
dimensional character of the tridiagonal partitions of Q (i.e., its tridiagonality) sim- 
plifies the rigorous analysis of convergence-its demonstration is our main result. 
When compared with the standard perturbation theories, an easy analysis of conver- 
gence in FPFT is its important merit. 

In the practical applications of our FPPT formulae, we may encounter essentially 
the two types of problems: 

( 1 )  An algebraic construction of the explicit higher-order corrections is a compara- 
tively tedious task-we must solve the quadratic algebraic equations. 

(2) The formulae contain the square roots-a non-trivial analysis of existence of 
the real solutions is sometimes needed. 

Both these problems are only technical in nature. They may be completely avoided 
via a modification of the FPPT formalism. This will be described, for the present 
example ( l . l ) ,  in the forthcoming paper (Znojil 1984~).  
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